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/Abstract

This paper presents approximations for the rms error of the maximum

likelihood estimator of the direction of a plane wave incident on a

Orandom array. The sensor locations are assumed to be realizations of

independent, identically distributed random vectors. The second part of

the paper presents an asymptotically unbiased estimator of the noise

wavenumber spectrum from random array data.
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Introduction

Sonobuoy fields are used to detect submarines. Thorn, Booth, and

Lockwood1 have proposed that the signals from randomly deployed sonobuoys

be coherently combined to make acoustic measurements. They present the

expected value and variance of the pattern function, and the distribution

of the directivity index of a three-dimensional random array. In their

model, the sensor locations are observed realizations of random variables

that may be correlated and have different distributions. They define an

array to be totally random if the sensor locations are realizations of

independent, identically distributed random variables. Several

stochastic properties of the sidelobe pattern of a totally random array

are given by Steinberg.
2

The ratio of the peak sidelobe to the main lobe and the directivity

index of an array system are measures of its ability to perform its

tasks. The generic signal processing tasks of an array system are:

1) detecting and estimating parameters of coherent wave signals that

impinge on the array; 2) resolving multiple wave signals; 3) estimating

range, bearing, or velocity of a source that generates the detected

signal; and 4) estimating the frequency-wavenumber spectrum of the

ambient noise field. This description of system tasks emphasizes the

statistical nature of the problem of measuring performance, especially

for random arrays.
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This paper presents approximations for the mean-square error of the

maximum likelihood estimator of the bearing of a plane wave impinging on

a random array from a distant source. The second part deals with

estimating the ambient noise's wavenumber spectrum.

1. Random Planar Arrays

Consider a planar array of M sensors where the sensor locations

{(xk,yk)} are realizations of independent, identically distributed random

variables {(Xk,Yk)}. Assume for simplicity that the signal is a single

frequency plane wave plus stationary, zero mean, Gaussian noise. Let 60

denote the wave's direction of arrival with respect to the x axis. This

angle is the source bearing if the medium is horizontally homogeneous.

Let wo, Xo, and A denote the wave's frequency, wavelength, and complex

amplitude, respectively. The signal at the kth sensor is

s(t,xk,yk ) - Aexp[i(Wot-Kxxk- yyk)] + E(t,xk,Yk) ,  (1)

where Kx - (2w/Xo)cos0O and Iy = (2w/Xo)sin8o are the x and y components

of is the wavenumber, and E(t,xk,yk) is a realization of the noise

field.

The correspondence between beamforming and frequency-wavenumber

processing, and an approximation to the maximum likelihood (ML) estimator

of Oo have been presented in a previous paper.3 If pEk..(Xk-X)2 and

PEkM1(Yk-y)2 are large, where p is the power signal-to-noise ratio in a

narrow band about wo and x r , Levin4 shows that the root

-- Le so ta th root
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mean-square errors of the IL estimators of Kx and Ky are approximately

M -1/2

rise Kx  [2p I (xk- ) 2J
k-l

(2)

M -1/2
ruse = [2p I (yk-:) 2 ]

k=1

M - -

Moreover, the covariance is E(Kx - KX)(K -y yK) (2pEk.1(xk-x)(Yk-y))- I.

These expected values are conditional on a realized array geometry, i.e.

they are ex-post the deployment of the array.

To approximate these errors, assume that M is large. Since the

sensors must lie in some closed and bounded set, the random variables

(XkYk) are bounded. Thus the central limit theorem implies that
M-1 M= - M, )2 - a 2 + o( 47 / (M-1/2*), -

-lk1(Xk-X)2=a Ox2 + O p(M- I/ ) and M-lky 2 +Op(-/ 2 ),

where Ox2 and Oy2 are the variances of Xk and Yk respectively, and

Op(X-1/2 ) means that for any 00, there is a BC>O such that the error is

bounded by BeM-1/ 2 with probability 1-c. Thus the rms errors

of cx and Ky are approximately

ruse Kx x (2pM)-1/Z-1

x

(3)

rmse Iy a (2pM)-1/2a-

y

for large M. The estimators are approximately uncorrelated if the

coordinate system is rotated to make the covariance Oxy 0 after

rotation.

4"..' ,
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The maximum likelihood estimator of the bearing is

o - tanl(Ky/Kx) radians. The linear approximation of tanl( y/Kx) -

tan- 1(Ky/KX ) is

(I+ y2c 2 )-I[Kx(K y-K y)-K yx (KX-X)]. (4)

Since Kx and Ky are approximately uncorrelated if oxy = 0, it follows

from (3) and (4) that when pMOx 2 and pMay 2 are large,

E((o-8o)2 (Xo/2w)2(2pM)-l(o-2sin26o + O-2cos2eo). (5)
x y

Thus if ax a ay a a, then from (5)

rmse8o  Xo(2pM)-/2 (2wo)-lrads. (6)

For example, let a/Xo - 12, M = 90, and p = 1/4(-6 dB). Then from (6),

rmse8o - 0.110 (1.98 x 10- 3 rads). If a/Xo = 100, M = 40, and

p - -10 dB, then rmse8o - 0.030.

Now suppose that Xk and Yk are independent uniform variates whose

range is (0,L), i.e. the sensors are uniformly distributed on the square

{0 e x 4 L, 0 4 y 1 L. Then a2 = L2/12. Let us compare the rmse~o of

this random array with that of the square lattice array whose M-N
2

sensors are at the points {(Jd,Xd):J,L-1,...,N). If the length of the

square's sides is L, then the sensor spacing is d - L/(N-1).

From (2), (4), and (5), we only have to compare M- E(xk-V)2 =

K-l(yk.-) 2 with o2 . Since
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M N
M-1I (xk- - ) 2 - M-d 2N I (j-) 2  (7)

k-l J-1

M d2 (N-1)(N+I)/12 
.L2 N+

12 N-I

SL2/12 - 02 ,

expression (6) holds for the square lattice array. The approximate

rmse of the maximum likelihood bearing estimator for a uniform

random array on a square is equal to the approximate rmse0o for a

uniformly spaced lattice array on the same square.

2. Three-Dimensional Random Arrays

For a given coordinate system, let xk - (xk,yk,zk)' denote the

vector location of the kth sensor in a three-dimensional array. Let eo

denote the azimuth angle of propagation with respect to the x axis, and

let ao denote the elevation angle with respect to the z axis. Thus the

signal at the kth sensor is

s(t,xjk) - Aexp[i(wot - 'Xk ) ] + e(t,Xk),

where K' - (KxKyKz) is the vector of wavenumber components

x - (2w/Xo)CoS 0o, K y - (21/Xo)sin8o, and K. - (2/Xo)cosao.

The correspondence between beamforming and frequency-wavenumber

processing holds in three dimensions. The ML estimators of the

wavenumber components are the Kx , Ky, and Kz that maximize

i , H .. . .. . . . r /. . .. .i . . . . . .
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N M
Ss(tj~xkykzk)exp[i(K' k- Wotj)J1 2  (8)

J-1 k-I

where N is the number of simultaneous discrete-time observations of the M
A

channels. 5 The rms errors of K. and Ky are approximated by (2), and

rmseiz  [2PE,= l(Zk-) 2 -1/2. once again, the ML estimator of the source

bearing is 60 = tan-I( x) , and thus (5) holds for a totally random

three-dimensional array of M sensors.

3. Estimating the Wavenumber Spectrum

Consider the problem of estimating the frequency-wavenumber spectrum

of the ambient, zero mean, Gaussian noise field around a random array.

Since an n-dimensional array is not much harder to analyze than a linear

array, let 3k = (xkl,...,xkn)' denote the vector position of the kth

sensor with respect to a fixed coordinate system. Assume that the Kk are

realizations of independent random vectors { =_ - (Xkl,...,Xkn)') that

have a common continuous multivariate density f(x). Rotate the

coordinate system so that the covariance matrix of k is diagonal, and

for simplicity let o12 2 = 2  
, i.e. a2 is the variance of each

Xkj after rotation.

Let c(t,x) be the noise at point x at time t. If the noise field is

stationary in t and x, the covariance function cr(T,.) = EE(t+T,Y+ )e(t,x)

is independent of t and x. The frequency-wavenumber spectrum is defined

as

S -() - fcr( r,)exp[i(K'O - w-t)ld, (9)

I-
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assuming that c. is absolutely integrable. The power spectrum of the

noise is SC(w,0).

Assuming that the channels are sampled at times tj-JA for

J-O,...,N-1, define the discrete Fourier transform
N-i

{(3) - rj. 0 e(JA)exp(-iwjA): k - 1,...,M). If Sc(w,O) is bandlimited

at w/A, then N-EIE(B)l2 = A-1S,(w,O) for large N.6 Let us work with the

(ak) to obtain an estimator of S,(K,w) for a given w, which will be

denoted S,(K) to simplify notation. The properties of the estimator

depend on the following theorem.

Theorem. Define the n-dimensional Fourier transform,
7

M
U(K) - Ek.1 e (k)exp(iK'xk). Assume that D(W) = ff2(x)dx - O(o-n) and

when K * 0, I*(K)l < co-n for some constant c, where O(K_) - Eexp(iK'&) is

the characteristic function of Xk. These assumptions hold for the

multivariate normal and uniform densities. Then

lim (DM2)-IEIU(_)12 - Se(K),
M,o+-

and U(n) and U(E2) are asymptotically uncorrelated for K 1 * q.

M
Proof: The array transfer function is R(K) - tk-lexp(iW'k). For large

M, M-IR(K) - O(K) + Op(K-1/2) by the central limit theorem. Thus

(DM2 )-lR(5j)R*(.2) - D-,(n)O*(n2) + Op(W-1 / 2 ) (10)

(star denotes complex conjugate) since D-I(c)I - 0(1) in the cross

product by the above assumptions. Thus

AL
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lir (DM2)-l(2Y)-nfIR(K) 12 dK - D-(2v)-nfjIO(K)j2d
= D-ff2(x)dx - 1. (I1)

From (10), lim . (DM2)-1IR(0)12 - D-110(0)1 2  D- 1 = O(an). Thus (11)

implies that as M and a+-, (DM2)-IIR(K) 12+6(K), a Dirac delta function. If

(DM2)-IR(QI)R*(K2) - O(f - n ) + Op(M 1 / 2 ). (12)

These limit results are used as follows:

M M
E[U(5I)U (.E2)] - I I cCxj - Hk)exp[i(K1 'xj - _'1)] (13)

J=1 k-I

M M
= (2,r)- n . . fsF(v)exp[-iv(xj - a)]exp[i(ij'xj - 5!'k)ldv

J-1 k-1

from the inverse of (9). Gathering terms,

E[U(5I)U*(._2)] - (2w)-nfR(K 1 - v)R*(._2 - v)S,(v)dv. (14)

Thus from the above limits and (14), limM,oa (DM2)-IzU(K)12 f

(21r)-nfI6(K-v)sc(v)dv - S (K).

If KI $ 2, then limMo+.(DM2 )-IEU(KI)U*(5_.2 )] = 0 from (12). Thus

U(in) and U(.2) are asymptotically uncorrelated. For finite M<<2n, the

correlation is Op(M-11/2).

This theorem provides a basis for estimating S,(K). One method is to

divide the (time) sample into J segments of successive observations,

Nj - NIJ, and compute U(K) for each segment. These U3 (K)'s will be

approximately uncorrelated if Nj is large. Thus from the theorem,

S,(K) - J-IEj=I(DM2)-IIU (K)1 2 . S,(K) for large J, M, and a. Since

.*
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Uj(K) have a complex Gaussian distribution for each j (the noise is

Gaussian), 2(DM2)-IjUj(K)I 2/S(K) is approximately chi-squared with two

degrees of freedom and thus the variance of S,(K) is approximately

J-IS 2 (K).

4. A Planar Array Example

Continuing with the vector notation, suppose that the sensors are

uniformly distributed on the square {-L/2 • x1 < L/2, - L/2 4 x2 • L/2}.

Thus f(x) - 1/L2 for x in the square, 012  02 2 _ a2 - L2/12, and

D _ ff2(x)dx - L- 2 . The assumptions for the theorem hold since D = 0(0- 2)

and *(i) - 4(Klg 2L
2)-lsin(KL/2)sin(ic2L/2) = 0(0-2). Thus

(L/M)2EIU(K)12 - S,(K) for large M and L in this example. The estimator

of Se(K) is then (L/M)2J-EjiIUj(c)12 using the time segmentation method.

*This work was supported by the Office of Naval Research (Statistics and
Probability Program) under contract.
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